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ABSTRACT 

An adaptive array tha t  re jec ts  undesired o r  interfer ing signals 

Here e r ro r  i s  defined as the difference between the array 
Minimization o f  

is presented. The array pattern i s  controlled by an adaptive feed- 
back system based on a steepest-descent minimization of mean square 
error.  
o u t p u t  and a locally generated reference signal.  
mean square e r ro r  i s  closely related t o  maximization of  signal-to- 
noise ra t io .  

A 2-element adaptive array has been b u i l t ,  and i t s  experimental 
performance is  discussed. Typical patterns f o r  various desi red and 
interfer ing signals are shown, as well as measured t ransient  response. 
Finally, some experiments showing the array behavior w i t h  modulated 
signals a re  descr-i bed. 

The resu l t s  show tha t  such an antenna system i s  capable of auto- 
matically re ject ing interfer ing s ignals  s subject only t o  certain basic 
constraints. No a pr ior i  information concerning the angles of arr ival  
of the signals i s  required. 
the desired and in te r fe r ing  signals i s  also not needed, although the 
spectral  density of the desired signal must be known. 

Detailed knowledge of the waveforms o f  
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AN ADAPTIVE ARRAY FOR INTERFERENCE REJECTION 

I .  INTRODUCTION 

An adaptive array may be defined as one tha t  modifies i t s  own pat tern,  

All adaptive antennas to  date have 
frequency response, o r  other parameters, by means of internal feedback 
controlg while the antenna operates. 
been receiving arrays,  because the pattern of a receiving array can be 
eas i ly  controlled by individually adjusting the amplitude and phase of 
the signal from each element. 
configurations are  conceivable. 

However, other types of adaptive antenna 

A phase-lock loop ar rayr l l  is  probably the best  known type of 
adaptive array. A phase-lock loop array operates by aligning the phase 
of the signal from each element w i t h  t ha t  of a reference signal”,  w i t h  
a phase-lock l o o p ,  before the s ignals  are summed. T h i s  type of feed- 
back forces the antenna t o  have a beam i n  the direction of the incoming 
signal.  Amplitude control of the signal from each element is  some- 
times added, g i v i n g  additional f l e x i b i l i t y  t o  the pattern control. 
Svoboda[lI discusses an amplitude control scheme t h a t  s e t s  the g a i n  
of each element proportional t o  the r a t i o  of rms signal level t o  noise 
power on tha t  element, t h u s  making the array operate as a maximal-ratio 
combinerl21 e The self-phasing array has cer ta in  desirable features  
(automatic beam tracking and an adaptive b a n d w i d t h ) ,  b u t  i t  a l so  has 
undesired features ,  the most important being the suscept ib i l i ty  of the 
array t o  be ing  “captured” by interference o r  jamming[3] e 

An en t i re ly  d i f fe ren t  type of adaptive array has recently been 
proposed by Shor[4], and also by Widrow, e t  a1.[5]. 
been more general - namely, t o  look on the adjustment of the weighting 
coeff ic ients  i n  the array as an adaptive optimization problem. 
adjusts the weights i n  the array to  maximize the signal-to-noise r a t i o  
a t  the output. Widrow, e t  a l . ,  minimize an e r r o r  s ignal ,  which i s  equal 
t o  the difference between the output of the array and a reference signal.  

Their approach has 

Shor  

. I t  can be shown tha t  these two c r i t e r i a  are closely related.  

.. In th i s  report  we discuss an experimental adaptive array based on 
the feedback concept discussed by Widrow, e t  a l .  [5]. The general form of 
the adaptive array i s  shown i n  F ig .  1. 
passed through an amplifier w i t h  controllable gain and phase. 
nals a re  then added t o  produce the array output S ( t ) .  To make the array 
adaptive, S ( t )  i s  compared w i t h  a reference signal T ( t ) ,  and the d i f -  
ference, the e r ro r  signal E ( t ) ,  forms the i n p u t  t o  a feedback system 

The signal from each element i s  
The si.g- 

. . . . .  

*The reference signal can be (1) the signal on one of the elements, 
(2) the sum signal from the array,  o r  (3 )  a local ly  generated 
reference signal.  
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DESIRED 
OUTPUT 

Fig .  1. Basic adaptive feedback system. 

tha t  controls the weights W i .  
weights so the mean-square value of E ( t )  is  minimized. T h i s  has the 
e f fec t  of forcing the o u t p u t  of the array S ( t )  t o  approximate the 
reference signal T ( t )  as closely as possible on a mean-square basis. 
T h u s ,  any received signal t ha t  i s  n o t  represented i n  T ( t )  appears as 
an e r ror  s ignal ,  and the feedback x u s t s  the weights t o  remove i t  from 
the o u t p u t .  
direction from which this signal comes. I f  the received signal i s  
represented i n  T ( t ) ,  the feedback retains  this signal i n  the o u t E t  
( w i t h  amplitude and phase the same as T ( t ) ) .  
criminate between "desired" and "undesired" signals (e.g., between 
a desired communication signal and an interfer ing s ignal)  by means 
of what is  used f o r  the reference signal T ( t ) .  

The  feedback i s  designed t o  adjust  the 

The resu l t ,  i n  antenna parlance, i s  a pattern null i n  the 

T h u s ,  one can dis- 

The  feedback concept discussed above was suggested by Widrow, 
e t  a1.[5]. 
i n  several respects. 
of interference rejection i n  radio communications. To t r e a t  this 
problem rea l i s t i ca l ly ,  i t  must be assumed tha t  the desired signal 
contains modulation components t ha t  are unknown a t  the receiver. 

The  work described here d i f fe rs  from t h e i r  work, however, 
First, we are interested mainly i n  the problem 
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Hence the reference signal T ( t )  cannot be made exactly equal t o  the 
desired s ignal ,  b u t  can only approximate i t  i n  some sense. We describe 
here some experiments i n  which the desired signal contains modulation 
components n o t  present on the reference signal.  
case where the desired signal i s  known exactly a t  the receiver, so an 
exact replica can be used for  the reference T ( t ) .  Second, the feed- 
back system discussed here is  a continuous, analog system. 
consider a d i g i t a l ,  sampled-data feedback loop. Although this i s  only 
a minor difference,  the problems of feedback l o o p  s t a b i l i t y ,  which are 
discussed i n  some detai l  i n  [5] ,ar ise  only w i t h  a sampled loop.  A 
continuous loop, based on the feedback algori t h m  discussed below, i s  
s tab le  f o r  a l l  g a i n  set t ings.  T h i r d ,  the work reported here i s  pri- 
marfly experimental, whereas the work i n  E51 i s  theoret ical .  

Widrow, e t  a l .  t r e a t  the 

Widrow, e t  af . ,  

11. THE FEEDBACK ALGORITHM 

Let us assume for the moment tha t  the weighting coeff ic ients  wi! ,  
. - e ,  WN shown i n  F ig .  1 are  real .  That i s ,  we ignore the poss ib i l i ty  
o f  varyfng the phase af each element. 
written 

The array output may then be 

N 
E ( t )  = T ( t )  - 1 W i x i ( t ) ,  

i=l  

and hence the squared error i s  

The mean-square e r r o r  i s  t h u s :  

where the bar indicates the time average. 
more conveniently i n  matrix form as 

(5) 

Equation (4)  may be writ ten 

-- 
T T 

E 2 ( t )  = T 2 ( t )  - 2W @ ( x , T )  + W @(x,x)w 

3 



where w and @(x,T) are column matrices, 

(7) 

x , ( t )  T ( t )  

x 2 ( t )  T ( t )  

. . 

Q(X,X) is  an N x N matrix, 

x + t )  x , ( t )  I 
x*( t )  X l ( t )  

Q(X,X) = I *  
T and w denotes the transpose of w. 

, 

... 

I t  may be seen from Eq. (4) o r  (5) t ha t  E L ( t )  i s  a quadratic 
function o f  the weights. 
X i t t )  T ( t )  are  constant, the surface obtained by p l o t t i n g  x) versus 
the weights is a bowl-shaped surface,  as i l l u s t r a t ed  i n  F ig .  2 f o r  the 
case'of two weights. 
w i t h  time* may be viewed as a motion of the bowl.) 

T h u s ,  i f  i t  i s  assumed tha t  X i ( t )  X j ( t )  and 

(The case where x i ( t )  x . ( t )  and x i ( t )  T ( t )  change 
J 

The quadratic nature 

*These time averages are  understood t o  be taken over an interval l o n g  
compared w i t h  the fluctuations of x i ( t )  and T ( t ) ,  b u t  s t i l l  f i n i t e ,  
so gradual changes i n  the character is t ics  of the signals r e su l t  i n  
time-changing averages. 

4 



of Eq. (4) i s  impor t an t ,  because 
defined m i n i m u m ,  and furthermore 
saddle-points or re la t ive  minima 

I \ 
i 

i t  implies tha t  the bowl has a well- 
i t  has only one m i n i m u m .  
are n o t  possible. 

T h u s ,  

.- . . . .  
Fig. 2. The er ror  surface. 

I t  is clear  on.physica1 grounds tha t  the extremum of the bowl i s  

The value o f  the weight vector 
a m i n i m u m ,  n o t  a maximum, since the e r ro r  can be made a rb i t r a r i l y  large 
by a sui table  se t t ing  of the weights. 
g i v i n g  m i n i m u m  $(t) ,  which we will denote by w opt * , may be found by 
se t t ing  

- 

- 
2 (9 1 VW(E 1 = 0, 

where vw denotes the gradient w i t h  respect t o  w. Since 

- 
2 

(101 V W ( &  ) = -2@(x,T) i- 2 @  ( x , x )  W ,  

we find 
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W o p t  = @(x,x)-l  @(x,T) ,  

where we have assumed tha t  @(x,x) is  nonsingular so  i t s  inverse @ ( X , X ) - '  
exists. 
m i n i m u m  mean-square e r ro r  is found from Eq. (5) t o  be 

I f  the weight vector w is  set  equal t o  wept,, the result ing 

-- 
2 2 T (13) E min = T (t) - @ (x ,T)  @-'(x,x) @(x ,T) .  

T h i s  result may be used t o  rewrite Eq. (5) i n  the form 

2 which places the quadratic dependence o f  E ( t )  on the weights w i  
c lear ly  i n  evidence. 
necessarily have i t s  principle axes oriented para1 le1 t o  the wi-axes. 
A coordinate system whose axes do l i e  parallel  t o  the principle axes 
may be defined by the relation: 

Finally, we remark tha t  the "bowl" does n o t  

= R E  op t .  (15) w-w 

where R is an N x N rotation matrix of elements rij: 

and R is an N-element column mat r ix  whose elements gi are  the "normal 
coordinates" of the bowl : 

6 



S u b s t i t u t i n g  E q .  (15) i n t o  E q .  (14) gives 

( 18) E (t)  = 3- ET [RT o ( x , x ) R ] &  

and when R is chosen so R ~ ( x , x ) R  -is diagonal 

- -  
2 

T 

RT, (x 

then the R i  are normal coordinates, We note tha t  since the E 2 ( t )  

surface has a m i n i m u m  fo r  w = wopt the eigewalues A -  are nonnegative. 
The f a c t  t h a t  A i  > 0 may also be sfiown direct ly  from Q ~ x , x ) ,  b u t  we will 
not go t h r o u g h  that here. 

Now l e t  us examine the jus t i f ica t ion  fo r  u s i n g  m i n i m u m  mean-square 
e r ror  as the cr i ter ion for op t imiz ing  array performance. 
the o u t p u t  from the array consists of three types of contributions: 
a desired s ignal ,  an interfer ing s ignal ,  and random noise. 

(26) 

where 

In general, 

We may write 

S{i; = aSd[i;j i- p S i ( t j  i- y n ( t j  

Sd ( t )  = a desired signal 

Si[t) = an interfer ing signal 

n ( t )  = random noise 

and where a ,  8 ,  and y are  constants representing the combined e f f ec t  of  
the weights W i  on these signals.  
form o f  the desired signal is known exactly a t  the receiver. 
the reference signal T ( t )  i s  s e t  equal t o  a replica of the desired 
signal 

Assume for the moment tha t  the wave- 
Then i f  

the e r ro r  signal becomes 

7 



where the terms S d ( t ) ,  S i ( t )  and n ( t )  a re  assumed uncorrelated, so the 
cross-product terms, such as S d ( t )  S i ( t ) ,  are  zero. 
c2( t ) ,  the sum of (1-a)' S i ( t )  and B S i ( t )  + y n (t) must be m i n i -  

Thus ,  t o  minimize 
2 2  2 2  

mized. I n  general terms, this quantity will be m i n i m u m  if a is  nearly 
unity and B u t  this condition is  
equivalent to  (1) miniziming the power i n  the interference while (2)  
constraining the power i n  - the desired signal to  be constant. Stated 
another way, m i n i m i z i n g  E' is  equivalent t o  maximizing the signal-to- 
noise rat-lo, where "noise" i s  interpreted as including the interference. 

2 and y2 are  as small as possible. 

T h i s  argument, although generally correct ,  does overlook cer ta in  
l imitations.  
exact form of the desired signal is  unknown a t  the receiver. Howevers i n  
many cases T( t )  can be made t o  approximate S d ( t )  i n  some sense. 
example, when S d ( t )  is a signal w i t h  amplitude modulation, i t  i s  possible 
to  use the ca r r i e r  component of S d ( t )  for T ( t )  and s t i l l  obtain sui table  
operation (as will  be seen i n  the experiments described below). 
presence of the sideband components - i n  S d ( t )  increases the m i n i m u m  mean- 
square error  E' 

signal-to-noisBiPatio. 

First, i n  practice one cannot s e t  T ( t )  = S d ( t )  because the 

For 

The 

, b u t  minimizing E* s t i l l  corresponds t o  maximizing 

A second limitation is tha t  the arguments break down f o r  low 
signal-to-noise r a t io s  it the elements. A t  low SNR's, the array may 
not tend t o  constrain a = 1, i f  the S&) term contributes - only negligibly 
t o  E ~ (  t) . 
respond to  maximum SNR. 
equivalent t o  maximizing SRN, and this i s  the optimization c r i t e r ion  
used i n  the array described below. 

T h u s  for low SNR conditions, m i  nimuni E' may no longer cor- 
However, f o r  most cases, mjnimizing E' is  

Now consider the method by which the weights are  t o  be s e t  equal 
t o  t h e i r  optimum values. 
x - ( t )  X j ( t )  and X i ( t )  T ( t )  f o r  a l l  i , j ,  and t h u s  determine the matrices 
@tx ,x)  and @.(x,T). 
evaluated by means of Eq.  (12) .  
i s  n o t  ap ealing, because of the d i f f i cu l ty  i n  measuring @ ( x , x )  and com- 

more, the object is  to  b u i l d  an adaptive array,  so  tha t ,  f o r  example, 
changes i n  the angle of a r r iva l  of the interfer ing signal will  be auto- 
matically "tracked" by the weight settings. To adapt t o  such changes by 
the above method would require tha t  the measurement of @(x ,x )  and @(x,T)  
and the computation of @ ( x , x ) - ~  be repeated periodically. 

A more a t t r ac t ive  al ternat ive i s  to  use the feedback algorithm 
suggested i n  [ 5 ] .  

adjusted according to  the rule:  

One approach i s  t o  measure the quant i t ies  

@(x,x)- l  may then be computed, and the optimum weights 
From a practical  standpoint, this approach 

p u t i n g  @- P (x,x),  especially i f  the number of elements i s  large.  Further- 

T h i s  feedback rule  is  based on a s teepest  descent 
minimization of E 2 [not 7 E ). Specifically,  each weight wi is  to  be 

8 



2 2 where ow.[& ( t ) ]  denotes the ith component of the gradient of E ( t )  
w i t h  respect to  the weight vector w s  and ks i s  a ne a t ive  constant. 
Since the gradient measures the sens i t i v i ty  o f  E Z ( t 3  t o  each o f  the  
weights, the feedback rule  s t a t e s  t h a t  a given weight W i  will  be 
changed a t  a ra te  proportional t o  the sens i t i v i ty  of the E 2 ( t )  surface 
t o  t ha t  weight. The gradie t of a surface i s  a vector i n  the maximum 

Hence this i s  a steepest-descent algorithm, and i t  has a lso been referred 
to  a s  the LMS algorithm[5]. 

1 

uphill di rect ion,  so  ksvN[c 9 ( t ) ]  poi-nts i n  the maximum downhill direction. 

Evaluating the gradient gives 

and from Eq. ( 2 1 ,  

vw [ E ( t ) l  = - x i w .  
i 

(25) 

Hence the feedback rule becomes 

dwi -- =-2k x . ( t )  E ( t )  d t  S l  ( 2 6 )  

or  i n  integral  form 

T h i s  feedback may be instrumented as shown i n  F ig .  3 ,  w h i c h  shows one 
loop of the system. 

So f a r  we have assumed tha t  the w e i g h t i n g  coeff ic ients  i n  the array 
are  real , so tha t  only the amp1 i tudes o f  the s ignals  xi ( t )  are adjusted. 
Actually, i t  i s  necessary to  adjust  the phase of each signal X i ( t )  as 
well, t o  make use of the f u l l  f l e x i b i l i t y  available i n  the pattern.  Phase 
control can be achieved by s p l i t t i n g  the signal from each element into an 
in-phase component and a quadrature component and then adjusting each w i t h  

9 



a real  weighting coeff ic ient ,  as shown i n  F ig .  4. The signal i s  used d i -  
r e c t l y  f o r  the in-phase component, and i s  delayed one quarter wavelength* 
to  produce the quadrature component. 
is then equivalent t o  control of both magnitude and angle. 

Independent control of the two weights 

S I G N A L S  FROM 
O T H E R  E L E M E N T S  

ARRAY O U T P U T  

I N T EGR AT OR 

S I G N A L  

Fig .  3. Basic feedback algorithm. 

1111. THE PROCESSING UNITS 

Two signal processing units based on the feedback scheme shown 
i n  F ig .  4 were designed and bui l t .  
of these units. 
u n i t  i n  more de t a i l .  
phase channel and a quadrature channel, as discussed above. Each channel 
i s  then s p l i t  again into two paral le l  paths, one to  provide posit ive gain 
and the other negative g a i n .  To achieve a fu l l  3600 phase control i n  the 
u n i t  requires both the in-phase channel and the quadrature channel t o  be 
capable o f  h a v i n g  e i the r  posit ive o r  negative gain. 
i s  most eas i ly  accomplished by u s i n g  two amplifiers "back-to-back", one 
w i t h  posit ive gain and the other w i t h  negative gain. 

Figure 5 shows a photograph of one 

The signal from the element i s  s p l i t  i n to  an i n -  
Figure 6 shows the various electronic  functions i n  this 

In pract ice ,  this 

*The system described below is re la t ive ly  narrowband ( 3  MHz bandwidth 
a t  a center frequency of 65 MHz)  and the delay required was one-quarter 
wavelength a t  65 MHz. 

10 
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Fig. 5. Electronfcs Unit for One Element. 
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The amplifiers used were dual-gate f i e l d  e f f e c t  t rans is tors  ( F E T ' s ) ,  
which were found  t o  be superior t o  integrated c i r c u i t  AGC amplifiers or 
current control led diode attenuators w i t h  regard t o  cross-modulation, 
l i nea r i ty  and phase s tabi l i ty*.  In addition, FET amplifiers have the 
h e l p f u l  property tha t  the i n p u t  impedance a t  the control gate i s  es- 
s en t i a l ly  i n f i n i t e ,  so i t  is  possible to  "freeze" the weighting coeffi-  
c ien ts  i n  the array by simply disconnecting the control voltages. 

The processing units operate a t  a center frequency of  65 mHz w i t h  
an RF bandwidth of approximately 3 mHz. A complete schematic of the 
processing u n i t s  i s  shown i n  the Appendix. 

Figure 7 shows some experimentally measured gain curves f o r  one 
o f  the "back-to-back" amplifiers. The p l o t  shows the RF o u t p u t  voltage 
from the amplifiers as a function of the control voltage, f o r  various 
i n p u t  s i g n a l  levels.  
lower power levels ,  the performance was acceptable. 

Although the curves a re  not completely l inear  a t  

IV. EXPERIMENTAL RESULTS 

I n  this section the resu l t s  of several experiments performed on 
a two-element adaptive array,  u s i n g  the processing units described 
above, are given. 

A. Phase Tracking 

First, consider the f o l l o w i n g  experiment. An unmodulated signal 
i s  fed i n t o  b o t h  processing units and a l so  in to  the reference signal 
por t .  The adaptive feedback should then adjust  both the amplitude and 
phase of the o u t p u t  s i g n a l  u n t i l  they match those of the reference 
signal (it must minimize the e r ro r ) .  Figure 8 shows the measured d i f -  
ference i n  phase and amplitude between the array output and the 
reference signal as the phase difference between the two elements i s  
varied over a 360° ran e. ( T h i s  is  equivalent t o  varying the angle of 
a r r iva l  of the signal.? I t  is seen t h a t  the phase e r ro r  varied between 
-50 and 90 and the amplitude r a t io  varied over a range of -0.5 dB to  
+0.4 dB. 

B. Amp1 i tude Tracking 

Next, Fig .  9 shows the resu l t s  of an experiment i n  which the ampli- 
tude of the signal was varied,  while the reference signal was held 
constant. The curve shows the amplitude of the e r ro r  signal E ( t )  , 
r e l a t ive  t o  the reference signal amplitude. (The lower the e r ro r ,  the 

*The phase s h i f t  of the amplifiers should not change as the gain i s  
adjusted. 
could be held t o  w i t h i n  100 over a 25 dB range of gain control. 

In pract ice ,  i t  was found t h a t  w i t h  FET's  the phase sh i f t  
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be t t e r  the array processing units are performing.) I t  may be seen t h a t  
the e r ro r  was maintained 20 dB o r  more below the reference over a range 
of i n p u t  signal levels of approximately 23 dB. 
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F i g .  9, Error level vs signal level .  

C. Interference Rejection 

rejection capabi l i ty  o f  the array. 
represented i n  the reference signal T ( t )  contributes direct ly  to  the 
e r ror  s ignal ,  and the feedback system adjusts the weights t o  minimize 
it. 

Next we discuss a number of experiments d e a l i n g  with the interference 
As discussed above, any signal not 
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The f irst  experiment involved a simulated t e s t  of interference 
rejection by the array. Two CW signals were injected d i rec t ly  in to  
the processing units (i.e., no actual antenna elements were used). 
The s ignals  were separated 10 kHz i n  frequency. First, one of them 
was injected w i t h  equal phase on each processing u n i t ,  corresponding 
t o  a desired signal arriving from broadside. This signal was a l so  used 
f o r  the reference signal T (  t) .  The weighting coefficients were a1 lowed 
t o  adapt, and the f ina l  values were noted and used t o  compute the pat- 
tern labelled "before adaptation'' i n  F i g .  10. Next, a second signal 
(an interfer ing s ignal)  was a l so  injected,  w i t h  an e l ec t r i ca l  phase 
angle between the u n i t s  corresponding t o  a signal incident from 40° 
off  broadside w i t h  half-wavelength spacing between elements. After 
t h i s  signal was turned on, the weighting coefficients changed t o  new 
values. These values were then used t o  compute the second pat tern,  
labelled " a f t e r  adaptation" i n  F ig .  10. 
feedback causes the antenna to  form a null on the interfer ing s igna l .  

I t  may be seen how the adaptive 

The second experiment performed was a measurement of the improve- 
ment i n  the r a t io  of desired signal power t o  interfer ing signal power 
a t  the output of the array due t o  the adaptive feature.  First, a 
desired signal arr iving from broadside was injected i n  the array. 
the weighting coefficients reached t h e i r  f ina l  values , they were frozen 
and the interfer ing signal was turned on. The r a t io  of desired signal 
power to  interfer ing signal power a t  the output of the array was measured. 
The array coefficients were then allowed t o  readapt, and a f t e r  they 
reached t h e i r  new f ina l  values , the r a t i o  of the powers of the desired 
and interfer ing s i g n a ' l s  was sp in  mea,surec!. 
r a t i o ,  which we may cal l  the adaptivi t y ,  

After 

The tmprovement i n  t h i s  

a f t e r  adaptation 

before adaptation 
T- 
T- 

Adaptivity = 

where 

D = desired signal power 

I = in te r fe r ing  signal power 

fs plotted i n  F ig .  11. The f igure shows the adaptivity i n  dB versus 
the e l ec t r i ca l  phase angle difference between elements f o r  the in te r -  
fer ing s i g n a l .  The desired signal arrived from broadside ( i n  phase 
i n  b o t h  elements) f o r  the en t i r e  curve. The adaptivity i s  shown f o r  
five d i f fe ren t  interfer ing signal power levels a t  the i n p u t  t o  the array. 
For a l l  curves (except the 0 dB one) the interfer ing signal power i s  
higher than tha t  of the desired signal.  The type of feedback used 
(see Eq. (27) )  has the property tha t  i t  tends t o  hold the e r r o r  signal 
a t  a re la t ive ly  constant level ,  regardless of the power level of the 
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interfer ing signal .* T h i s  property projects in to  the adaptivi ty curves 
i n  F i g .  11, When the interfer ing signal power i s  increased 5 dB, the 
error s-lgnal remains constant, so  the adaptivity increases 5 dB. 

For the case where the in te r fe r ing  signal power i s  20 dB higher 
than the desired signal power, the processing units have been driven 
beyond t h e i r  l inear  l imits  and the units no longer operate properly. 

I t  it noted tha t  the adaptivity drops t o  zero a t  both ends of the 
curve, where the e l ec t r i ca l  phase angle between the interfer ing signal 
i n  the two elements approaches O0 or 180°. 
simply due t o  the f a c t  t h a t  the array pat tern,  when maximized f o r  
broadside, has a null i n  the endfire direction anyway. 
desired signal incident from broadside r e su l t s ,  in the absence of 
interference,  i n  a pattern w i t h  a null i n  the endfire direction. When 
the interference i s  then turned on, i t  i s  already i n  a nu l l ,  so the 
adaptive feedback makes very l i t t l e  change. This resu l t s  in a meas- 
ured adaptivity of nearly zero, b u t  i t  represents no real l imitation 
t o  array performance. 

actual l imitation i n  the system. 
close the interfer ing signal can come t o  the desired signal i n  space 
and s t i l l  be nulled out. 

Near 180°, this r e s u l t  i s  

That i s ,  a 

The drop  i n  adaptivity near Oo, on the other hand, represents the 
This end of the curve defines how 

These curves, show tha t  10 dB improvement of signal-to-interference 

Furthermore, 
. - - A = _  > -  - . . : A -  ---:l.. --L: _..- -I :.- -..- h 
r a L t ~  13 qui Lt: e a 5 1  iy aLiiicvcu i t i  >ubi1 ~.ii ci-rtij; fei- iii~st ~ Z ~ S Y Y = S E Z C E  
angles, and 30 dB i s  even possible under some conditions. 
this improvement i s  based on only two elements, and one may hope to  do 
be t te r  w i t h  more elements. 

Next 'we consider some interference rejection experiments i n  which 
actual antenna elements were useds and antenna patterns were taken on a 
pattern recorder. 
spaced ~ / 2  apart  on a rectangular ground plane. 
recorded a t  2.1 gHz. Each element was connected d i rec t ly  t o  a mixer, 
where the frequency was converted t o  65 mHz and p u t  in to  the two 
processing units. A common local o sc i l l a to r  fed both mixers. 

The antennas used were a pa i r  of ~ / 4  monopoles** 
The patterns were 

In F i g .  12,  a s ingle  desired signal illuminates the antenna from 
the direction shown. 
and were then frozen. 
and F ig .  12  shows the resu l t .  

T h e  weighting coefficients were allowed to  adapt, 
W i t h  the weights frozen, the pattern was r u n ,  

*The feedback loop f o r  each element is  a Type I (coupled) loop w i t h  
loop gain proportional t o  the signal intensi ty  squared. See Section 
D below. 

**A i s  the wavelength. 
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F i g .  12.  Adaptive Antenna Pattern; Desired Signal Only, 
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In F ig .  13, the experiment was the same as f o r  F i g .  1 2 ,  except t ha t  
now the array weighting coefficients were allowed t o  adapt as the pattern 
recorder turned. 
as  the recorder turned, and the pattern beam tracked the s igna l ,  re- 
sul t i n g  i n  an "omnidirectional" pattern.  

In this case the weighting coefficients were varying 

In Figs .  14, 15, and 16, both a desired signal and an interfer ing 
signal illuminated the antenna. The weights were allowed t o  adapt and 
were then frozen. The patterns shown i n  the figures were r u n  w i t h  the 
weights fi.xed. These patterns show three d i f fe ren t  s e t s  of incidence 
angles f o r  the desired and in te r fe r ing  signals.  
the adaptive feedback forced a null i n  the direction of the in te r fe r ing  
signal.  

I t  may be seen how 

Finally, F ig .  17 shows the depth of the null on the in te r fe r ing  
signal as a function of i t s  angle of a r r i v a l p  when the desired signal 
remains a t  broadside. 
p lo t  of null depth.) 

(This is  not an instantaneous pattern,  b u t  a 

D. Speed of Response 

To study the t rans ien t  behavior of the weighting coeff ic ients ,  one 
may examine the d i f fe ren t ia l  equations which they sa t i s fy .  Since 

(28) 

and 

(29) 

we f i n d  

(30) 

o r  

(31) 

Written 

(32)  

where w 

dwi 
- = ksxi(t)  ~ ( t ) ,  d t  

N 

dwi N 
-+  k s x i ( t )  1 x . ( t ) W  = k s x i ( t )  T ( t ) .  
d t  j= 1 J j 

i n  matrix form, this i s  

d w +  k X w =  k S T x ,  a T s  

is  defined i n  Eq. ( 6 ) ,  
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(33)" 

and 

(34) * 

... 

... 
... 

Unfortunately, E q .  (32) i s  a system of different ia l  equations for 
which no method of constructing a general solution is  known. For the 
special case where there is  only one weight, say w l ,  Eq. (32) becomes 

CiWl 2 (35) - d t  + ksxl(t)wl = ks T ( t )  x l ( t ) .  

A general s o l u t i o n  f o r  this equation i s  easi ly  obtained by use of an i n -  
t e g r a t i n g  fac tor ,  w i t h  the r e su l t  

where C i s  a constant of integration. 
involved, no general solution fo r  the system (32) can be constructed. 
There are certain special cases, of course, where the system can be 
solved. 
found. 
matrices X and dX/dt commutes, then a matrix integrating fac tor  can be 
used t o  construct a solution analogous t o  Eq. (36). However, these 
cases do not appear t o  correspond t o  a meaningful s e t  of signals i n  
the adaptive array problem. 

B u t  when more than one weight i s  

For example, i f  the matrix X i s  constant, a solution i s  easi ly  
Or, i f  the signals happen t o  be such t h a t  the product of the 

*Note tha t  +(x,x) = x, +(x ,T)  = m. 
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Fig .  13.  A d a p t i v e  Antenna Pattern; D e s i r e d  S i g n a l  T racked .  
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Fig .  74. Adaptive Antenna Pattern; Desired Signal 
P1 us Interference. 

26 



F i g .  15. Adaptive Antenna Pattern; Desired Signal 
P I  us Interference. 
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(Fig,  16. Adaptive Antenna Pattern; Desired Signal 
Plus Interference. 
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F i g .  17. Depth o f  Interference N u l l .  
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Other approaches to  solving the system (32) are  o f  course possible. 
The equations can be solved on an analog computer o r  a d ig i ta l  computer. 
Various techniques f o r  obtaining approximate analytical  solut ions,  such 
as  s e r i e s  solutions o r  perturbation techniques, seem promising. These 
tdeas a re  presently under study, and will be discussed i n  a future 
report. 

Certain general conclusions are  possible, however, When th i s  system 
is viewed as a problem i n  feedback control,  i t  i s  c lear  t ha t  the response 
time of the system depends on the amplitudes of both the desired and 
interfer ing s igna ls ,  because of the X i ( t )  x . ( t )  terms i n  the d i f fe ren t ia l  

proportional t o  the square of the signals x i ( t > .  
s i g n a l s  X i ( t ) ,  the t i gh te r  the loops. T h i s  i s  the reason tha t  the e r ro r  
signal amplitude i s  approximately independent of the i n p u t  signal leve l ,  
as  we previously remarked. 
signal would imply a larger  steady s t a t e  error .  
larger  i n p u t  r esu l t s  i n  a tighter loop, w i t h  the r e su l t  t h a t  the e r ro r  
s tays  constant. 

equations. Stated another way, the feedbac 2 loop has a gain constant 
Hence the la rger  the 

In a l i nea r  feedback loop, a larger  i n p u t  
B u t  f o r  this loop, a 

Figure 18 shows a measured t rans ien t  response of one of the weighting 
T h i s  curve is  a typical r e su l t ,  and has a time coeff ic ients  i n  the array. 

constant of approximately 20 or 30 milliseconds, 

.E. Experiments w i t h  Modulated Signals 

hiov+ @ * b # \ b  ?,IC consider s m e  expei-fneilts wiiei--e t i l e  siyri~iis in the array 
contain modulation b u t  the reference signal i s  unmodulated. For a 
desired signal h a v i n g  amplitude modulation of the form 

(37) S(t) = a ( t )  cos uot  

= A, [l + 2 k m  COS umt] COS u o t ,  

and a reference signal of the form 

(38) T ( t )  = A, COS m o t ,  

- 
2 the mean-square e r ror  E (t)  i s  found t o  be 

2 1 2 
(39) E ( t )  = 7 (Ar-A0I2 + ( A  o m  k 

P 

2 The value of A, g i v i n g  l e a s t  E (t)  may be f c  ind b se t t i ng  

which yields  
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does n o t  force the ca r r i e r  
reference sianal car r ie r .  

Hence the m i n i m u m  mean-square error cr i ter ion 
component of the AM signal t o  be equal t o  the 
Instead the ca r r i e r  of the AM signal i s  suppressed relativ; t o  the reference 
car r ie r ,  by an amount dependent on the modulation fac tor  km. 

Figure 19 compares this calculated suppression w i t h  the resu l t s  
measured on the processing units, f o r  two d i f fe ren t  signal levels.  
km = 0, A should be equal t o  A, and no suppression should occur. 
km = 4 (180% modulation) A, = 2/3 Ar and the ca r r i e r  of the signal should 
be about 3.5 dB lower than the reference signal.  The experimental resul ts  
shown i n  Fig.  19 agree reasonably well w i t h  this. 

For 
For 

Next, we consider the interference rejection properties of the array 
w i t h  modulated signals.  
spectrum analyser connected t o  the o u t p u t  of the array. In Fig.  20, 
the desired signal consists of a ca r r i e r  component and two sidebands 
separated 50 kHz from the carr ier .  The ca r r i e r  of  the desired signal 
was used f o r  the reference signal ( t h a t  i s ,  the reference signal did 
not contain the modulation components). A CW interfer ing signal was 
added 10 KHz below the ca r r i e r  of the desired signal.  The t o p  photo  
shows the o u t p u t  spectrum before the weighting coefficients are  allowed 
t o  adapt, and the bottom curve shows i t  a f t e r  adaptation. I t  may be 
seen how the interference is  removed from tne o u t p u t  by the adaptive 
feedback. 
scale. In F i g ,  20, the interfer ing signal has approximately 4 times 
the voltage of the desired signal ca r r i e r ,  o r  16 times the power. 

Figures 20-22 show photographs taken of a 

In Figs.  20-22, the spectrum analyser has a l inear  voltage 

Figure  21 shows a case i n  which both the desired signal and the 
interfer ing signal are modulated. The  desired signal has sidebands 
50 kHz f rom the ca r r i e r ,  and the ca r r i e r  alone i s  also used f o r  the 
reference s ignal ,  as before. 
mately 8 kHz below the ca r r i e r  of the desired s ignal ,  and modulation 
sidebands 20 kHz each s ide o f  the car r ie r .  The pictures again show 
the spectra before and a f t e r  adaptation. 

The interference has a car r ie r  approxi- 

Finally, Fig.  22 shows a case involving noise modulation on the 
interfer ing signal. 
alone, 
signal.) 
is added, b u t  before adaptation. 
adaptation. 

Photo ( a )  shows the spectrum of the desired signal 
(The ca r r i e r  of the desired signal was used for  the reference 

Photo ( b )  shows the o u t p u t  from the array when the interference 
Photo (c)  shows the o u t p u t  again a f t e r  

The manner i n  which the adaptive feedback cleans o u t  the in te r -  
ference i n  these t e s t s  is  very impressive, and i t  is  c lear  tha t  these 
antennas have considerable potential for applications where interference 
rejection is needed. 
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Fig, 18, Time response o f  weight ing c o e f f i c i e n t ,  
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F i g ,  20, Adaptive rejection o f  interfering signal e 
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Fig, 21. Adaptive rejectlon o f  interfering signal 
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F i g ,  22. A d a p t i v e  r e j e c t i o n  of i n t e r f e r i n g  s i g n a l  e 

36 



V. CONCLUSIONS 

An experimental two-element array has been described, The array 
operation is based on a feedback algorithm determined by a steepest-  
descent minimization of error .  
automatically tracking a desired signal and  automatically re ject ing 
an interfer ing s i g n a l .  

The array i s  found to  be capable o f  

A number of experiments were performed on the two-element array,  
including 

measurements of the a b i l i t y  of the processing units t o  track 
phase and amplitude of the desired signal ( F i g s ,  8 and 9),  

measurements of the "adaptivi ty" o f  the array ( F i g s .  10 
and l l ) ,  

measurements of antenna patterns obtained w i t h  interference 
present (Figs e 12-17) , 
measurements of the t rans ien t  response of the sys tem 
( F i g .  18) and 

measurements of the interference rejection capabi l i t ies  
w i t h  modulated signals (Figs. 20-22). 

The t e s t s  described show t h a t  these antennas have  considerable 
potential for applications where interference reject ion i s  needed. 
The signal processing equipment i s  straightforward and can be con- 
s tructed w i t h  readi 1 y avai 1 ab1 e coniponen ts . 
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APPEND1 X 

T h i s  section presents the c i r c u i t  diagram for a signal processor and 
br ie f ly  describes the components used. 
Except f o r  the ~ / 4  delay l i ne  both the upper and lower halves are symnetrical. 

The schematic i s  given i n  F ig .  A l .  

A double-balanced mixer us ing  four matched hot c a r r i e r  d iodes  was used 
t o  perform the multiplication operation. The excellent balance of the 
mixer eliminated the need f o r  null balance adjustment and minimized the 
interact ion between- the incoming and e r r o r  signals.  

A h i g h  gain discrete  component operational amplifier w i t h  RC feed- 
back was used f o r  the integrator.  A unity gain integrated c i r c u i t  amplifier 
provided the required s i g n  inversion. 

Dual gate f i e l d  e f f ec t  t rans is tors  were used both t o  provide gain and 
t o  vary the weighting coeff ic ient  for each of the four  channels of the 
s i g n a l  processor. A single  gate FET could have been used t o  provide power 
gain b u t  the dual gate version i s  reported t o  have superior cross-modulation 
performance and greater  dynamic range. 

excellent means f o r  "freezing" the weighting coefficients.  
disconnecting the control voltage from the gate,  with a switch, the 
amplifier gain remains constant and one can then r u n  an antenna pattern. 

change from the previous closed loop value. 

The nearly i n f i n i t e  dc gate impedance of this device provides an 
By simply 

The ~ i ; l i f i e r  gaf; i-cXcii<S coi2sttiiTt foi- sc\iei-al h~Ui-5 ir5 tii r i u  i ~ i t j a ~ u ~ t t b i e  
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